Вопрос по алгебре
Анонимный
1 год назад

Знайдіть скалярний добуток векторів AB̅̅̅̅ і AC̅̅̅̅, якщо А (1; 0; 3),В (0; -1; 2) і С (3; 4; 0).

Ответы 2

Ответ:

Скалярний добуток векторів AB̅̅̅̅ і AC̅̅̅̅ можна обчислити за формулою:

AB̅̅̅̅ · AC̅̅̅̅ = (x2 - x1)(x3 - x1) + (y2 - y1)(y3 - y1) + (z2 - z1)(z3 - z1),

де (x1, y1, z1) - координати точки A, (x2, y2, z2) - координати точки B, (x3, y3, z3) - координати точки C.

Підставляємо значення координат:

AB̅̅̅̅ · AC̅̅̅̅ = (0 - 1)(3 - 1) + (-1 - 0)(4 - 0) + (2 - 3)(0 - 3)

= (-1)(2) + (-1)(4) + (-1)(-3)

= -2 - 4 + 3

= -3.

Отже, скалярний добуток векторів AB̅̅̅̅ і AC̅̅̅̅ дорівнює -3.

Відповідь: -3.

Пояснення:

Знайдіть скалярний добуток векторів AB̅ і AC̅, якщо

А (1; 0; 3),В (0; -1; 2) і С (3; 4; 0).

АВ(-1;-1;-1); АС(2;4;-3).

АВ×АС=-1×2-1×4+1×3=-2-4+3=-3.

0 0 оценок
Премиум статус
Получайте самые быстрые
ответы на свои вопросы
У вас остались
вопросы?