Вопрос по алгебре
Анонимный
1 год назад

помогите пожайлуста, даю 100 балів і найкращу відповідь)​

Ответы 1

1. В

[tex]2 {x}^{2} - 3x + 4 = 0 \\ a = 2\\ b = - 3\\ c =4 \\ D = {b}^{2} - 4ac = ( - 3) {}^{2} - 4 \times 2 \times 4 = \\ = 9 - 32 = - 23 \\ D < 0[/tex]

нет корней

2. Г

По теореме Виета:

[tex] {x}^{2} + bx + c = 0\\ x_{1} + x_{2} = - b[/tex]

[tex] {x}^{2} + 3x - 10 = 0 \\ x_{1} + x_{2} = - 3[/tex]

3. В

[tex]4 {x}^{4} - 5 {x}^{2} + 1 = 0 \\ a = {x}^{2} , \: \: a \geqslant 0 \\ 4 {a}^{2} - 5a + 1 = 0 \\ D = ( - 5) {}^{2} - 4 \times 4 \times 1 = 25 - 16 = 9 \\ a_{1} = \frac{5 + 3}{2 \times 4} = \frac{8}{8} = 1\\ a_{2} = \frac{5 - 3}{2 \times 4} = \frac{2}{8} = \frac{1}{4} \\ \\ {x}^{2} = 1 \\ {x}^{2} = \frac{1}{2} \\ \\ x_{1} = 1\\ x_{2} = - 1 \\ x_{3} = \frac{1}{2} \\ x_{4} = - \frac{1}{2} [/tex]

4. Г

[tex] x\neq 2 \\ \frac{ {x}^{3} - {x}^{2} - 2x }{x - 2} = 0 \\ {x}^{3} - {x}^{2} - 2x = 0 \\ x(x {}^{2} - x - 2) = 0 \\ x_{3} = 0[/tex]

По теореме Виета:

[tex]{x}^{2} + bx + c = 0\\ x_{1} + x_{2} = - b\\ x_{1} x_{2} = c[/tex]

[tex] {x}^{2} - x - 2 = 0 \\ x_{1} + x_{2} =1 \\ x_{1} x_{2} = - 2 \\ x_{1} = 2 \\ x_{2} = - 1[/tex]

Первый корень не подходит, поэтому только х = 0 и х = -1

5. В

[tex]y\neq1 \\ \frac{ {y}^{2} + 4y }{y - 1} = \frac{5}{y - 1} \\ {y}^{2} + 4y = 5 \\ {y}^{2} + 4y - 5 = 0[/tex]

По теореме Виета:

[tex]y_{1} + y_{2} = - 4\\ y_{1} y_{2} = - 5 \\ y_{1} = - 5 \\ y_{2} = 1[/tex]

Второй корнень не подходит, поэтому ответ: х = - 5

Премиум статус
Получайте самые быстрые
ответы на свои вопросы
У вас остались
вопросы?