Вопрос по математике
Анонимный
4 года назад

Помогите пожалуйста желательно с графиком даю 100 баллов

Ответы 2

[tex]\int\limits^2_1 {((x+1)-0)} \, dx =\int\limits^2_1 {(x+1)} \, dx =\int\limits^2_1 {(x^1+1)} \, dx=(\frac{x^{1+1}}{1+1}+x)|^2_1=(\frac{x^{2}}{2}+x)|^2_1= \\ \\ = (\frac{2^2}{2}+2)-(\frac{1^2}{2}+1)=4-\frac{3}{2}=\frac{5}{2}=2,5[/tex]

Ответ:

[tex]y=x+1\ ,\ \x=1\ ,\ \ x=2\ ,\ \ y=0\\\\\\S=\int\limits^2_1\, (x+1)\, dx=\dfrac{(x+1)&^2}{2}\, \Big|_1^2=\dfrac{1}{2}\cdot (3^2-2^2)=\dfrac{1}{2}\cdot (9-4)=2,5[/tex]

2.5 2 оценки
Премиум статус
Получайте самые быстрые
ответы на свои вопросы
У вас остались
вопросы?